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Recursive approach for constructing theq=1/2 maximum entropy distribution
from redundant data
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A recursive approach for computing tlge= 1/2 nonextensive maximum entropy distribution of the previ-
ously introduced formalism for data subset selection is proposed. Such an approach is based on an iterative
biorthogonalization technique, which allows for the incorporation of the Lagrange multipliers that determine
the distribution to the workings of the algorithm devised for selecting relevant data subsets. This technique
circumvents the necessity of inverting operators and yields a recursive procedure to appropriately modify the
Lagrange multipliers so as to account for each new constraint.
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[. INTRODUCTION of a random variable. This variable adopts the possible val-
uesf;,; n=1,..N. The expectation values are computed
In a recent publicatiofil] we have introduced a method using a(generalized, sefl]) probability distributionp/?;
for data subset selection, which is based on the nonextensiye=1,...N. Thus, the data model is expressed in term#/lof
maximum entropy formalisnh2—9] by considering the case equations of the form
g=1/2 previously discussed in other conteki®-13. The
method evolves iteratively by selecting, at each iteration, the N
measure yielding a=1/2 distribution capable of making o= p¥%,,, i=1..M (1)
predictions minimizing the Euclidean distance to the avail- S = T
able piece of data. During the selection process, however,
such a distribution is not actually computed, as doing sahat, adopting a Dirac’s vectorial notation, are recast as
would involve computing an inverse operator at each itera-
tion. Instead, we use a convenient orthogonalization which 1£0)=A|p'2)
avoids operator inversion at each step of the iterative pro- '
cess. The inversion is performed at the end of the selection . . .
process, so as to obtain the Lagrange multipliers which everWhere|p'?) is rNepresented in terms of tiséandard basign),
tually determine they=1/2 distribution. n=1..Nof R%,
In this Brief Report we show that, by means of an ad- N N
equate biorthogonalization technique, one can include the Un Un 172
computation of they=1/2 distribution, at every step of the Ip 6_“21 m}nip 6_“21 pain),
selection process, without the need of inverting operators. By
recourse to the present approach, ¢vel1/2 distribution is  whjle the data vectof®) is represented in terms of the stan-
recursively “adapted” at each iteration, at low computational y5,¢ basidi), i=1,...M of R™,
cost. This new algorithm is based on the use of biorthogonal
vectors for representing orthogonal projectidrasther than M M
using orthogonal vectors as proposedif. The possibility [£Y=>" [i)i|fo)=> f2i). (4)
of implementing this proposal at low computational cost lies i=1 i=1
in the existence of a recursive approach, to be discussed here,

for computing biorthogonal vectors yielding the above-The gperatoA: RN—RM in Eq. (2) is given by the matrix

mentioned orthogonal projectors. SAIAN — - C e
) : . .__elementsi|Alny=f; ,; i=1,..M; n=1,..N. Thus, by de-
The paper is organized as follows: Section II summarizes. . VIR et
the formalism for data subset selection proposedllin In ?mmg vectors ) « R™ in such a way thafi[f,)=f; q, the

Sec. Ill, a new approach for computing the corresponding®PeratorA is expressed as

Lagrange multipliers is introduced, based on a biorthogonal N

technique for constructing orthogonal projectors. The con- ~

clusions are drawn in Sec. IV. A=n§=:l [f)(nl. ®)

2

3

II. SETTING UP THE PROBLEM . . .
By considering as constraints a subsek &q. (1) labeled by
Along the lines of[1], let us consideM pieces of data indexesl;, j=1,..k, the resultant maximum entropp*?)
2.f5,....f2,....fy, each of which is the expectation value distribution adopts the forri]
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1 1 N
[pt29)= N_Nj:l<g||j><|j|)\(k)> nzl|n>
k
+ 21 AT (1IN) (6)
=
with
N N
l9)= 2 Ifo)= 2, Aln). @

We have introduced here the supersckipp explicitly indi-
cate that thép/?®) distribution is built out of an optimizing

process involving constraints. The Lagrange multiplier vec-
tor A} is determined in such a way that, using the associ-
ated probability distribution, one may be in a position to

make “sensible” predictions. By this we mean tHat/2))
enables one to predict a complete data vectt?f)
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Maximization of Eq.(12) yields an effective strategy for
minimization of (11), with much lower computational effort
than that involved in tackling directly the latter. Such a pro-
cedure, however, does not provide a direct way of computing
the distribution|p¥2®). Indeed, givenk subindexed;, j
=1,...k, the corresponding distribution is to be obtained
from Eq.(6) and, since the vectdh ) is given by Eq.(8),

we need to compute the inverse operatefR,) ~* in order

to determing p/2().

The goal of this effort is to avoid the need for such an
inversion so as to be able to introduce the calculation of
|pY2®) into the iterative process that selects the subindices
li; j=1,..k. We tackle the issue in the forthcoming section.

A recursive approach for constructing |pY2*)

We introduce here an iterative procedure which allows us
to quickly modify the|p¥2®) distribution each time a new
subindex, sayy. 1, is selected.

=A|pY2M) e RM thatminimizes the distance to the observed The key idea for achieving such a goal is to make use of

vector |f°). Such a requirement entails

M) = (FiF0 RifFo), ®
where[f°)=|f°)—|g)/N and
k
Fi=2, |alj><|j|’ 9
=1
with
" 1
|a|j>:§_: [Fad(fall )= 19Xl (10)
n=1

The subindiced;, j=1,...k are iteratively selected as fol-

the fact that the orthogonal projector

Fi1(FlL P 1) " *Fl. | admits a representation in terms of
biorthogonal vectors which are computed in an iterative
fashion. Indeed, given a set of vectdirs,n), n=1,.Kk+1,

let us define Ve%t0r$$k+1> as |‘7’k+_l>:|_Ek+l>/”|‘r//k+l>“
=[ i )/l s DI, with [¢h.1) as given in Eq(13). Then,
the dual vector$'&|kn”|, n=1,...k+1 which are obtained by

recourse to the recursive relations

<5‘|kn+l| = <71|kn| _<a:<n| a X Dral, n=1,.k,

(EL = (i1l _ (i1l
et (el ) (Wl e

> :<‘Zk+1|v (14

lows: givenk subindexed;, j=1,..k, the corresponding With (¢ [=(e [/ | ), satisfy the following properties
I, 4 is obtained by the requirement that the predicted vectof14].

|fP) minimizes the distance to the observed ve¢t8f. This
is equivalent to selecting the vectkmkH) minimizing

IT0) = Fres 1Pl aFi ) TR AT (11)
The observation thaf,. ((F}, Fy.1) *F}l., is the or-
thogonal projector operator onto the subspage =V
®|ey,, ), whereV, is spanned bi/a,j), j=1,..k, hasledin

[1] to conclude that minimization ofll) is tantamount to
maximization of functional®;, i=1,...M given by

b; JA£Y
ei:_l |<a|| >| b;>0,

& (ayla)— 2t inla)f

12

where Y 1) = 1)/l ¥+ 1)]l and |y 1) are orthogonal
vectors arising, fromy,)=|a, ), as

|'//k+1>:|a'k+1>_lst|a'k+1>' 13

(a) Biorthogonality with respect to vector$a,n), n
=1,..k+1, ie,

@ ey )=a ),

n=1,.k+1; m=1,.k+1. (15

(b) They provide a representation of the orthogonal pro-
jection operator ont®/,, ; as given by

k1 k1
Py, = ngl oo W@ =P, = ngl NI
(16)

From propertiega) and (b) it immediately follows that the
vectors(a}(n+1| given in Egs.(14) give rise to a recursive

formula that yields the Lagrange multipliers involved in
minimizing the distance to the observed data vettéy.
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Proposition 1 The Lagrange multipliers that minimize the (10 1)>:<ak+ 1|’fo> n=1,..k+1 (22)
distance to the observed ddf&) are amenable to be recur- " 'n ' ’
sively adapted, when a new constraint is introduced, accord-

ing to the recursive relation so that, after using Eq14) in these equations, the recursive

. formula (17) follows. [ |
(Inlx“‘“)):(In|)\(k))—(a}<n|a,kﬂ)(&kﬂﬁo), In order to writelliznkflconvenient' form the corresponding
formula yielding|pY2** 1), let us first define an operator

n=1,.Kk, Fy. 1 in the fashion
(AN Dy = (e 4[T), (17 . kil .
. ~ Frer= 2 (@ (0l (22
with (1A D)=(a [F)/][| )12 n=1om

Proof. As discussed aboJef. Eq. (8)], givenk+1 con-
straints the Lagrange multiplier vector minimizing the dis-which, by means of Eq14), can be recursively computed as
tance to the observed dgt?) is a solution to the equation

|)\(k+l>>:(f:lﬂfzkﬂ)*lf:LlﬁO)_ (18) 'Ek+1:ﬁk+|le+1><|k+1|_|le+1><a|k+l||~:k, (23

Multiplying both sides of Eq(18) by Fy..1, we obtain with E1=|a|l><ll|/|||a|l>||2. The recursive formuld17) for

Fro Ny =F (B P ) 'L, [f9) (19 the Lagrange multipliers adopts, thereby, the form

; o = —1pt » ..
"ol projector onoV,.- by ubing Eqe(i in (19 ana (AN =UA)~(1Bla, )cafF)
expressing-,.1 as given in Eq(9) we have
k+1 k+1 n=1..k
> fa (N D)= oy (@) (20 o
R DR (et N D)= (e [T0), (24)

We proceed now to performing the inner product of the two o

sides with each of the vector§ ", n=1,..k+1. The  with (I]A®)=(a [f)/[| )]

biorthogonality property(15) then gives rise to the set of Now, from Eqgs.(6) and(24), we finally obtain the recur-
equations sive formula for|p2&*1) as given by

1 R . . . . .
(n|pt2 ) =(n|p9) = G (allicr ) e o[ T) + N,Zl @R, M e 1T+ AT (e 1[F0)

k
—JZI<n|ATI|j><|jIﬁEIalkHXZmI?"), n=1,..N. (25

Let us recall that the method for selecting the relevant datgusually, we havé&<M). The|p*?®)) distribution provides
(indexesl;) advanced in1] is also able to yield both the us then with the corresponding decoding tool, via &).
vectors|y, 1) and the vectorgey ) (see[1] for a sketch

of the pertinent algorithin Here we simply make use of the IIl. CONCLUSIONS

availability of these vectors so as to iteratively construct the
We have introduced a maximum entropy procedure for

. . . data selection that represents a significant improvement in
is, at each apd every stage of the |te'ra'.[|ve algor)thpm— reducing the computational cost for evaluating the associated
pute the all-important Lagrange multipliers. As a final re- . iim entropy Lagrange multipliers.

mark, we would like to stress that the recursive form(@4) We build up the present approach upon the foundations
for the Lagrange multipliers yields an iterative procedure todeveloped i1]. The data selection criterion ¢i] is not
encode the data vectdf®) e RM into a vector of lower di- affected in any way. Accordingly, when applying this meth-
mension|\ W) e R, wherek is the number of relevant data odology one must expect the results to be identical to those

operatorIA:k [given in EQ.(23)] in order to recursivelythat
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produced by the algorithm developed][it]. lies in the fact that it allows one to remedy such a situation.
However, we are now in a position to avoid, at each it-Indeed, since we camow recursively modify the distribution
eration stage, the need of inverting an operator so as to olwwhen a new datuniconstraint is selected, we are in a posi-
tain the Lagrange multipliers. This makes the technique estion to disregard, at each iteration, constrains yielding a
pecially appropriate when dealing with a large number of|p20) distribution which is not endowed with the property
data. Additionally, we are now in a position to tackle a very of positiveness.
important question: as a matter of fact, extremizing a nonex- From the above remarks we conclude that the new ap-
tensive entropy does not guarantee the positiveness of th@oach considerably widens the possible range of applica-
ensuing probability distribution. In particular, we cannottions of theq=1/2 distributions for data selection and data
guarantee the positiveness of fpd’?) distribution given in  compression.
Eq. (6). Actually, even if, using Eq(6), one does obtain a

non-negative distributiofrom noiseless datathe introduc- ACKNOWLEDGMENT
tion of noise may certainly affect the positiveness property.
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